
GENERIC ADA CODE IN THE NASA SPACE STATION
COMMAND, CONTROL AND COMMUNICATIONS ENVIRONMENT

D. P. McDougall
T. E. Vollman N89-16341

Veda Incorporated
Lexington Park, Maryland

1.0 INTRODUCTION

This paper describes the results of efforts to apply powerful
Ada constructs to the formatted message handling process. The
goal of these efforts has been to extend the state-of-technology
in message handling while at the same time producing production-
quality, reusable code. The first effort was initiated in
September, 1984 and delivered in April, 1985. That product, the
Generic Message Handling Facility, met initial goals, has been
reused, and is available in the Ada Repository on ARPANET.
However, it became apparent during its development that the
initial approach to building a message handler template was not
optimal. As a result of this initial effort, several alternate
approaches were identified, and research is now on-going to
identify an improved product.

The ultimate goal is to be able to instantly build a message
handling system for any message format given a specification of
that message format, The problexc lies in how to specify cne
message format, and once that is done, how to use that information
to build the message handler. In Section 2 we discuss message
handling systems and message types. In Section 3 we describe the
"ideal" system. In Section 4 we detail the initial effort, its
results and its shortcomings. We then describe the approach now
being taken to build a system which will be significantly easier
to implement, and once implemented, easier to use. Finally, in
Section 5, we offer our conclusion.

2. BACKGROUND

Message handling systems play a major role in command,
control, and communications (C3). C3 systems are most often found
in military applications, where rapid, accurate dissemination of
information is required. Non-milita'ry space-related
communications systems face many of the same requirements. In
this section, we discuss attributes of the message handling
systems which support the communications aspect of C3, and we
identify the requirements for those systems.

2.1 Message Handling Systems

The typical message handling systems consists of eight
components, as depicted in Figure 1. The transmitter and receiver
perform the actual communications between this system and some
other system with which it is communicating. They handle message
blocking, line protocols and other low level functions. They are
usually hardware dependent and are typically written in assembler
language or in microcode.

E.2.6.1

TRANSMITTER

MESSAQE
CREATION AND

EDIT
FACILITY

RECEIVER

D A T A
APPLICATIONS

UTILITIES

MESSAGE INPUT MESSAGE OUTPUT
PROCESSOR PROCESSOR

DATA BASE
MANAGEMENT SYSTEM

MESSAGE HANDLING SYSTEM COMPONENTS
Figure 1

The message input and output processors are the interface
between the rest of the system and the transmitter/receiver
facility. Usually a message handling system will hold the data in
some internal format which makes sense in the context of the
applications to be performed upon the data. This format is
usually independent of the format in which a message is
transmitted or received over any specific 1/0 line. The message
input processor accepts a bit stream input from a line by the
receiver, passes it, extract the information and passes it to the
Data Base Management System (DBMS). If the system provides for
real-time display of incoming messages, the input processor may
also pass the data along to a display utility. In a similar
manner, when a message is to be transmitted, the message output
processor extracts the data from the DBMS, or accepts it from a
system operator, and formats a bit string (or character string) to
be passed to the transmitter.

The DBMS provides for information storage and retrieval. The
data may be stored in message image format, or in some non-
message-related format. How the data are stored is typically
dependent upon the type of applications being performed upon the
data. In systems whose primary function is other than message
generation and transmission, the data are not typically stored as
message images. In other systems - or subsystems - whose sole or
primary function is directly message related rather than data
application related, the data are more likely to be stored in
message image format. At any rate, when an operator creates a
message, he usually wants to see its image prior to transmission;
therefore the interface between the DBMS and the Message Creation
and Editing facility - the editor - will normally include a
utility to extract data from the DBMS and build a message in the
specified format.

E.2.6.2

The editor will provide standard' functions such as
insert/delete line, cursor movements through the message, and so
on. Additional functions to be provided are dependent upon the
message format(s), which are discussed below. As we shall see, a
critical function is some sort'of embedded data validation.

Message handling systems usually provide the capability for
visual and hard copy message output, as well as message
transmission. In addition to viewing an image of the message they
are creating, operators will often want to keep a hard copy of the
message after it is sent, both for historical purposes, and for
possible future editing.

i The final component shown in the figure is not a part of the I

message handling system per se, but is the reason for data
exchange. While there are (sub)systems whose primary purpose is
nothing more than message handling (e .0. store-and-forward message
drops such as the Communications Line Interface (CLI)), most
message handling systems are components of larger systems which
perform some applications of the data to non-transmission related
problems. The data applications are not treated here: they do,
however, impact the format in which the DMBS holds the message
data.

Examples of message handling systems include the Force yigh
Level Terminal (FHLT) , the Ocean Surveillance Information System
(OSIS) , the Joint Tactical 1.nformation Distribution System
(JTIDS), and the World Wide Military Command and Control System
(WWMCCS) among many others. These systems employ a number of
different message types, or formats.

20.2 Message Types

Examples of message types include RAINFORM (of various
subtypes), Unit Reports (UNITREP) , Movement Reports (MOVREP) , and
Joint Interoperability of Tactical Command and Control System
(JINTACCS). The message formats have a number of elements in
common. First, each type (or subtype) is defined to pass on data
concerning a fairly specific event or of a fairly specific nature.
For example a RAINFORM Green message provides tasking data to U . S .
Naval forces prior to a mission, while those forces use a RAINFORM
Purple message to report the results of that mission. For another
example, a JINTACCS B704 is an Airbase Status Report while a
JINTACCS ClOO is a Imagery Interpretation Report.

Given the differing data requirements of these different
message types, it would be surprising if they could all be
accommodated using the same format. In fact, no such format has
yet been found. However, the formats which have evolved over time
have a number of similarities.

1) Messages are composed of two pieces, a header which describes
the sender and the routing and other information about the
message, and the body of the message holds the data content.

E.2.6.3

2) Both the header and body of the message are composed of line
groupings which contain one or more lines in some specific
order.

3) Each line is composed of a given sequence of fields (or
components) whose appearance or order can vary only within
narrow bounds.

Each field in a line contains a "molecule" of data which must
be given in a predefined format. In fact some fields are
composed of subfields (e.g. latitude is composed of degrees,
minutes, cardinal point, and in some cases, checksum).

4)

5) There are three types of fields: discrete, numeric, and
text:

a) Discrete fields are fields which must contain one of a
(small) finite number of entries - for example a "month"
field would have only twelve possible valid entries.

b) Numeric fields are fields whose entries must evaluate to
some numeric value. These fields may have a prescribed
format as integer for fixed point. In either case, the
number of significant digits (minimum and or maximum)
may be specified as may the number of digits on either
side of the decimal.

c) Text fields are freeform fields whose contents may be
any string of characters from some predefined character
set - usually letters, digits, and some punctuation
characters.

Message types differ then in which fields they use (and how
each is defined) , how those fields are used to define lines, and
how those lines are grouped to form line groups. In addition,
some message types are fixed format (the fourth field always
starts at character 17) while others make use of delimiters to
define where one field stops and the next starts. UNITREP is an
example of a fixed format message type, while RAINFORM is an
example of a "freer form" type.

The ideal message handling system would handle any and all
message types with the same (or similar) sets of functions and
user interface. If such a uniform system were to be built, the
factors listed above define the flexibility requirements for
accommodating various message type definitions.

I 2 . 3 Message Handling System Functional Requirements

Given that a message creation and editing system for some
message type is to be developed, what requirements must it meet?
The requirements important for the transmitter/receiver portion of
a message handling system are certainly different than those which
drive an editor's requirements. it appears that there are three

I
E . 2 . 6 . 4

factors which exert the most influence on an editor's requirements
and design: reliability, maintainability, and date validation.

Reliability is important for two reasons. First,
communications systems are usually of a critical nature, and their
failure can be catastropic. Therefore, message handling systems
must work predictably to ensure that the system provides the
capability expected during stress periods. Second, the output of
one such system is always the input of another. Therefore, the
failure of a message handling system to maintain communications or
to pass accurate, properly formatted data impacts the ability of
other systems to meet their requirements.

Maintainability is important due to the rapidly changing
nature of the communications theater. New communications systems
are constantly being fielded, and existing systems being upgraded.
A s this occurs, new message types are being added and existing
types updated. For example, one existing message type has
increased in size by over 20%, in terms of the number of different
line types, over the past six years. As new message types are
added and existing types modified, existing message handling
systems must be modified to accept these new data.

Data validation is in some sense a component of reliability,
but is so critical to the mission of an editor and message
handling system that we break it out separately. Newer message
handling systems (and some older ones such as FHLT) provide a hiqh
ciegree of input message checking; messages which contain invalid
data are either put into an error queue, or discarded. In the
former case the valid portions of the message are only available
to the system through operator intervention, in the latter case
they are not available at all.

2 . 4 Existing System Deficiencies

The current situtation can be summarized as follows: there
are a variety of message formats, each of which is handled on
several message handling systems, each of which has its own custom
software for each different message type it deals with. This than
means that there is in fact not a single RAINFORM message handler,
but several, each with its own code, its own set of functions, and
its own user interface. Thus, when the RAINFORM message
specification is updated, those updates find their way into some
systems and not others.

This leads to the following problems:

1) Configuration management is complicated by the various
implementations or message handlers for the same message
types.

2) Consistency and reliability suffer due to the fact that
each message handler implements somewhat different
versions of the message standard in questions.

E . 2 . 6 . 5

3) Maintenance is difficult and costly since each system is
coded in a unique fashion, many in different languages,
almost all using different approaches.

Generally speaking, each time we build a new message handler - whether for a new or existing message type - we are gaining
nothing from the fact that we have ever built such a thing before.
Furthermore, the costs involved in "reinventing the wheel" stay
with each system throughout its lifecycle. In the case of C3
systems, the lifecycles are long and therefore the excess cost
high.

Significant savings can be realized if we attempt to reduce
or eliminate the scope of the problems discussed above through
reusing message type definition and message editing and handling
technology. This can occur in several ways, ranging from complete
reuse of existing code, through partial reuse of code, to reuse of
designs and message definitions. In the sections which follow, we
describe some initial attempts to explore approaches to reuse of
message definitions, designs, and message editor code.

3. The Ideal System

3.1 Message Format Specifications as Ada Constructs With each
message format, there exist in some form or another, a format
specification. This specification provides detailed information
about the message format from the level of a message as an entity
m JOVJU tu the field content level. This information provides
guidelines required by applications programs for properly handling
formatted messages. Section 2.2 above describes in some detail,
the types of information provided by a format specification.

Ada lends itself very nicely to defining such specifications.
A field is the lowest level defined by a format specification. As
mentioned in Section 2.2, there are three basic types of fields:
discrete, numeric, and text. In Ada, discrete fields may be
defined as enumeration types. Numeric fields may be defined as
either integer, fixed point or floating point type. Text fields
may be defined as string. Compound fields may also exist. They are
fields which consist of several field components, all of which
must be one of the three basic field types. An example of a
compound field is a latitude field. In Ada a latitude field may
look like:

type LATITUDE-FIELD is
record
DEGREES : DEGREES FIELD;
MINUTES : MINUTES-FIELD;
CARDINAL POINT : CARDINAX POINT FIELD;
CHECKSUM- . : CHECKSUM-FIELD? -

end record;

Where the field component types: DEGREES - FIELD, MINUTES FIELD,
CARDINAL-POINT FIELD, and CHECKSUM - FIELD have previously been
defined as either discrete, numeric, or text.

E.2.6.6

In a formatted message, a line is composed of a given
sequence of fields. Using Ada, a line can be represented as a
record structure. Each component of the record structure would be
a field. For example, a formatted line which reported the contact
position of a ship may consist of three fields: contact
identifier, latitude of contact, and longitude of contact. In Ada,
the contact position line may look.1ike:

type CONTACT - POSITION-LINE is
record

CONTACT I DE NTIFIE R : CONTACT-I DENTIFIER FIELD ;

CONTACT-LONGITUDE : LONGITUDE - FIELD;
-

CONTACT-LATITUDE : LATITUDE FIELD;

end record7

Where the field types: CONTACT-IDENTIFIER FIELD, LATITUDE FIELD,
and LONGITUDE FIELD have previously been defined according t o the
rules for defrning field types.

When lines are grouped together in a particular manner, they
make up a formatted message. In Ada a formatted message may be
represented as a record structure. Suppose a formatted message of
a particular type was made up of the following five formatted
lines: message identifier line, contact sighting line, contact
position line, contact amplification line and a remarks line. The
Ada definition of such a message type would be:

type PICTIOGS MESSAGE F3RMA'l' is - -
record
MESSAGE IDENTIFIER .
CONTACT POSITION
CONTACT~SIGHTING

CONTACT-AMPL IFI CATI ON :
REMARKS- .

end record:

MESSAGE IDENTIFIER LINE;
CONTACT-SIGHTING LTNE ;
CONTACT-POS I TI ON-LINE ;
CONTACT-WLIFICXTION LINE;
REMARKS-LINE ;

- -

Where t h e various line types have previously been defined
according to the rules for defining formatted lines.

In the "ideal" system, a message format would be defined as
an Ada construct similar to that described above. Such a means for
defining a message format has many advantages. In particular, the
message format specification becomes a compilable unit therefore
providing a means of partial validation of the format
specification syntactically and semantically. Additionally, the
Ada definition of the message format may be used directly in
applications Ada programs that require knowledge of the format.

There are a variety of methods for defining message format
specifications in Ada, however the record structure described .

above appears to be the most natural representation of a message
format for existing formats. Currently the United States Air Force
(USAF) is working with the JINTACCS community to define their
message formats as Ada record types.

E.2.6.7

3.2 A Generic Message Handling System

Though message formats will vary, the requirements for
message handling systems, as described in Section 2, tend to
remain fairly static. Generating a message handling system for
each distinct message format is a costly and time consuming task.
A solution, though a non-trivial one, would be to develop in Ada,
a generic message handling system. The generic message handling
system would essentially be a generic package with its functions
and procedures not customized around any specific message format,
but rather designed to work with any message format specification
that the package is instantiated for. This would imply that the
only significant requirement for creating a message handling
system for a particular message format would be that the
specification for the message format be defined as an Ada record
and then the generic would have to be instantiated for the message
format. All information about the message format required by the
message handling system could than be extracted from the Ada
record structure containing the message format. Ideally than, the
generic definition would be as follows:

generic --
type MESSAGE-FORMAT-SPECIFICATION is private; -- where the actual parameter here would be a record type -- much like that defined in Section 3.1 above --

package MESSAGE-HANDLING-SYSTEM is

A person farmiliar with Ada generics or C3 systems would
immediately identify the "ideal" system as being highly
improbable. However, it is conceivable that a close approximation
could be reached. The close approximation would not be as clean
cut as the "ideal" but it would have many of the same benefits.

4. Striving for the Ideal System

4.1 GMHF as an Approximation

A first attempt at developing a generic message handling
system was completed in April 1985. The project, Generic Message
Handling Facility (GMHF)t was sponsored by the USAF and the Naval
Ocean Systems Center (NOSC) . GMHF is not a complete message
handling system. It primarily consists of the Message Creation and
Editing facility. The feeling being that sufficient amounts would
be learned from doing an editor and there was no real requirement '

to build an entire message handling system for this effort. The
purpose behind this effort was three fold. First, a feasability
study was to be performed to determine just how close to the
"ideal" system could you get using pure Ada features. Secondly, a
prototype system was to be developed as a close approximation to
the "ideal" system. And thirdly, a final analysis was to be

E . 2 . 6 . 8

performed to determine just how cost effective the generic system
was to use.

The first question was answered early on. It was apparent
that there was no clean cut method for building a generic package
around a generic formal parameter which was a message format
specification as an Ada record like that defined in Section 3.1.
Record types can indeed be passed as generic parameters, however
within the generic, little can be done with the record structure
since it is private.

In striving for an approximation to the "ideal" system, it
became clear that some sacrifices would have to be made. Since a
main concern of this effort was to determine cost effectiveness of
generics in real world applications, the message format
specification as an Ada record was substituted for something less
sophisticated. The format specification record was replaced by
several generic formal objects and types, and a database of
message specification information. Additionally several procedures
had to be passed as parameters to the generic. Provided below is
the essence of the generic definition for GMHF. Some minor
details have been left out for simplification purposes.

generic --
MAXIMUM CHARACTERS-PER-LINE : POSITIVE ;

. -- consiant value telling the generic how many characters -- maximum a formatted line may have for the instantiated -- message type.
MAXIMUM FIELDS-PER-LINE : POSITIVE; -- consiant value telling generic how many fields maximum a -- a formatted line may have for the instantiated message type.
MESSAGE FORMAT FILE-NAME : STRING; -- consTant vaiue providing the name of the file which contains -- the message format specification
type LIST OF-FIELD NAMES is (e>) ; -- an enumerated lTst of all fields for the message type
type LIST OF LINE NAMES is (c>) ; -- an enumerated iist of all lines for the message type. -- the line names are keys into the message format -- specification file.
with procedure GET - FIELD(FIELD NAME : in LIST OF FIELD-NAMES;

FIELD-VALUE : out STRIKG is ; -- this procedure provides all Tnstantiations of 1/0 packages -- for the field data types of a message type. In addition, -- the routine is organized as a large case statement which -- calls the appropriate input routine for a given field type -- ilpon request. This has proved to be a long and tedious

--

--

--

--

--

E . 2 . 6 . 9

-- routine to. generate.
with procedure FORMAT-LINE-OF-TEXT (LINE-OF-TEXT: in out STRING)

-- this procedure handles the formatting of-a line of text so as -- its physical appearence meets the requirements of the -- specification. For example, JINTACCS requires a ' / ' as a -- field delimitter between fields. When a field is left blank -- it appears as a '/-/'in the text of the message. This
-- procedure would be responsible for identifing a field as
-- being blank and subsequentlly placing a hyphen in the text.

--
is NULL PROCEDURE;

--
package MZSSAGE - HANDLING - SYSTEM is

The new types and objects as formal parameters and the format
specification databa.se contain much of the same information as the
record construct would have, but with great redundancies and in a
less clean, less natural fashion. The end result of all this was a
generic message handler which was a successful system but not an
optimal one.

With the' successful development of a generic message handler,
the question of cost effectiveness still remained. To resolve this
question, the generic was instantiated for two message types,
RAINFORM and UNITREP. The RAINFORM instantiation was completed by
one of the developers of the generic software. 'The UNITREP
instantiation was completed by an individual only mildly familiar
with the software but very farmiliar with Ada, the idea being that
the average instantiator of the generic would know little or
.nothing about the software itself. The results were very
promising. RAINFORM required a fairly significant amount of time
for instantiation, about 300 man hours. The majority of this time
was spent debugging problems in the generic which were encountered
for the first time. The instantiation of the UNITREP message
handler took approximately 60 man hours. The time for producing
the UNITREP instance was significantly less then the time that
would have been required to develop a non generic message handling
system unique to the UNITREP message format.

In short, development of GMHF and instantion for RAINFORM and
UNITREP message formats yielded one set of positive results. Use
of generics in real world applications should prove to be a very
cost effective means of software development. At the conclusion of
the GMHF effort, the question was raised, " Are there alternative
means for developing message handling systems which are better
than those imposed by GMHF? "
4.2 Problems with GMHF

To determine better means for developing message handling
systems, an attempt was made to identify problems and deficiencies
with GMHF. One deficiency was immediately apparent. GMHF required

E . 2.6 . 1 0

that the use of message format specifications as records be
sacrificed, so that we could develop the system as a generic unit.
In place of the record structure, an implementer of the generic
was forced to define data types to pass as formal parameters which
would normally not have been required. In addition, a small
database of message format specifications had to be created by the
implementer for use by the generic. These undesirable work-
arounds preferably should be avoided in future systems.

A requirement of message handling systems is that they
support data input and output (I/O) operations, data validation,
etc. The DBMS and Message Creation and Editing facility discussed
in Section 2.2 above, clearly have this requirement. 1/0
operations in this case do not refer to the low level 1/0 required
by the transmitter and receiver, but rather to the 1/0 routines
obtainable by instantiating packages such as TEXT IO, INTEGER IO,
ENUMERATION IO, DIRECT-IO, etc.. GMHF supports the 1/0
requirements, but with one hook. All 1/0 functions and procedures
which are to operate on types defined outside of the generic must
be themselves defined outside of the generic and passed into the
generic as parameters. This seems like an obvious requirement and
it is. Obvious as it may be, it is a tedious, therefore
undesirable task instantiating 1/0 packages for the types and
subtypes which comprise the many fields of a message format
oftentimes numbering in the hundreds.

-

To summarize, if the amount of work required by the
implementer of the message handling system could be reduced to a
minimum, such a system would become a much more powerful, useful
tool. .Therefore we must solve two problems. First, a way to
utilize the record definition of a message format' specification
must be developed. Secondly, the requirement for the implementer
to provide instantiations of all 1/0 packages for the different
field types and subtypes must be eliminated, vastly improving the

Through careful investigation it became clear, there 1s no
clean cut solution. Either you part with the message format
specifications as records, or you must part with the idea of a
generic message handling system. And in either case, the 1/0
packages for each of the field types would have to be created or
instantiated by the implementer of the system.

4 . 3 Introducing a Preprocessor to the Problem

Following the conclusive results of GMHF, a new concept was
introduced. A preprocessor could be developed which would accept
as input the message format specification as a record type, and
output as Ada code, a compilable package specification containing
all types, instantiations of 1/0 packages, etc., required to
instantiate the generic message handling system. Essentially, this
allows us to obtain the desired goal. An implementer is only

' usability of the system.

E. 2.6.11

required to generate a message format specification as an Ada
record and then instantiate the generic. Of course there are some
rules to follow when defining the message format specification so
as to stay within the bounds of the preprocessor. The development
of such a system is currently in progress with an expected
completion time frame of September 1986. Portions of the system
are being developed under contract to the USAF and NOSC, while the
basis of the preprocessor has already been developed by a third
party as an internal research and development project.

4 . 4 Implementation of Such A System

Implementation of such a system can be described as a series
of three main steps.

4 . 4 . 1 The Message Format Specification

The implementer is first required to generate a package
specification containing the record type definition for the
message format as demonstrated in Section 3.1 above. Having
completed this, the package specification should be compiled to
validate it syntactically and semantically.

4 . 4 . 2 The Preprocessor

Having successfully compiled the message format package
specification, the preprocessor should be activated. The
preprocessor will read the message format package specification as
an input file and generate an output file which is also a package
specification. The output file will contain all types, 1/0
packages, etc. derivable from the input package specification
which are required for instantiation of the generic message
handling system.

4 . 4 . 3 The Output Package Specification

When the preprocessor is complete, the output package
specification should be compiled. The implementers applications
program may then "with" the compiled output package specification

* and in turn, instantiate the generic message handling system.
, There will be additional generic parameters which the implementer
will be required to provide for the instantiation which will not
be included as part of the package specification output by the
preprocessor .

' 5. Conclusion

5.1 Status

The preprocessor solution for the "ideal" system is midway
through the design phase. Currently a prototype of the message
handling system is being developed to determine specific

E.2.6.12

requirements for the output of the preprocessor. A preliminary
version of the preprocessor has been developed, however not with
this particular application in mind. An expected completion date
for the entire system is September, 1986. The system will be made
available in the public domain via ARPANET upon completion. .

5 . 2 Summary

Development of a system such as that proposed by the
preprocessor method could in a sense, revolutionize the use of
message handling systems in the C3 world. Currently, so much money
is poured into the development and maintenance of systems in
support of C3. To begin development of code for such systems in
Ada is a very large step to improve the reliability,
maintainability, and reuseability of such systems. Additionally,
the generic message handling system as described in this paper
would be a welcome asset to the development of C3 systems. The
generic message handling system is portable between hardware, and
implementable for most every message format in use today by the
DoD .

E. 2.6.13

